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Fractal dimension of 3-blocks in four-, five-, and six-dimensional percolation systems
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Using Monte Carlo simulations, we study the distributions of the 3-block massN3 in four-, five-, and
six-dimensional percolation systems. Because the probability of creating large 3-blocks in these dimensions is
very small, we use a ‘‘go with the winners’’ method of statistical enhancement to simulate configurations
having probability as small as 10230. In earlier work, the fractal dimensions of 3-blocks,d3, in 2D ~two
dimensional! and 3D were found to be 1.2060.1 and 1.1560.1, respectively, consistent with the possibility
that the fractal dimension might be the same in all dimensions. We find that the fractal dimension of 3-blocks
decreases rapidly in higher dimensions, and estimated350.760.2 ~4D! and 0.560.2 ~5D!. At the upper
critical dimension of percolation,dc56, our simulations are consistent withd350 with logarithmic correc-
tions to power-law scaling.

DOI: 10.1103/PhysRevE.67.026103 PACS number~s!: 64.60.Fr, 05.45.Df, 64.60.Ak
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I. INTRODUCTION

Percolation is a classic model for disorder@1–3#. It con-
tinues to be of interest both because of the application of
model to various physical phenomena from flow in poro
media@4# to the behavior of forest fires@5# and because as
simple geometrical model of a system with a phase transi
it provides an ideal environment for studying the propert
of critical systems@6#.

A number of years ago, it was realized that for bond p
colation the incipient infinite cluster can be decomposed i
simply connected ‘‘links’’ and multiply connected ‘‘blobs
@7#. Recently, it has been recognized for bond percolat
that clusters and blobs are thek51 and k52 cases of
k-connected graphs (k-blocks!, graphs in which all vertices
are connected to every other vertex in thek-block by at least
k independent paths@8–10#. The values of the fractal dimen
sion d3 of 3-blocks in two- and three-dimensional~2D and
3D! percolation systems at the percolation threshold w
found to be 1.2060.1 and 1.1560.1, respectively@9#.

The fact that the fractal dimensions of 3-blocks are id
tical within error bars is consistent with the possibility th
d3 might be independent of dimension. This independe
on dimension would be surprising because all other n
trivial exponents depend on dimension below the upper c
cal dimensiondc56. To investigate whetherd3 is, in fact,
independent of dimension, we focus in this paper on de
mining d3 for d54, 5, and 6 using Monte Carlo simulation

In the following section, we studyd3 for percolation on
the Cayley tree in order to gain insight into the behavior
3-blocks in very high dimension. In Sec. III, we discuss t
methods we use to generate large 3-blocks in 4D, 5D,
6D. In Sec. IV, we discuss our results.

II. CAYLEY TREE RESULTS

Percolation on the Cayley tree has been used as a m
for percolation ford>6, the upper critical dimension of pe
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colation. The cluster fractal dimension and blob fractal
mension, as well as a number of other critical exponents
the Cayley tree, are identical to those of percolation ford
>6 @1–3#. Below, we argue that for percolation on the Ca
ley treedk50 for k>3 suggesting that whiled3 may change
little betweend52 andd53, eventuallyd3 decreases more
rapidly approaching zero ford56. To show thatdk50 for
k>3 for percolation on the Cayley tree, we make use of
concept ofk-bone. Reference@9# generalizes the concept o
backbone by defining ak-bone as the set of all sites con
nected tok disjoint sets of points byk independent paths
Thus, clusters and backbones arek-bones withk51 and 2,
respectively. For a givenk, the fractal dimension ofk-bones
andk-blocks are equal@9#.

To see that for percolation on the Cayley tree the frac
dimension of a 3-bone is zero, we choose any three point
the boundary~Fig. 1! and observe that there is only one s
which is connected to these points by independent pa
This result is independent of the size of the tree, even if
tree is fully populated. Hence, the fractal dimension is ze
Clearly this argument holds for largerk and is meaningful as

FIG. 1. Cayley tree in which each site except those on bound
has three neighbors. We note that even when all bonds are
occupied, there can be only one site which is connected to th
sites on the boundary. In this example the three sites on the bo
ary are the filled circles and the one site connected to them
independent paths is the striped circle denoted byA.
©2003 The American Physical Society03-1
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long as the branching factor in the Cayley tree is greater t
or equal tok, and holds independent of size.

III. SIMULATION METHOD

A. Statistical enhancement method

Randomly generated realizations in which large 3-blo
are present become more and more rare as the system d
sion increases. In fact, if traditional techniques are used
generate realizations, ford as low as 4 the range of the va
ues of the masses of 3-blocks created are so small that
cannot determined3 either by finding the best collapse o
plots of the distribution of masses or by inferringd3 from the
slope of the power-law regime of the distributions.

To overcome this problem, we use a ‘‘go with the wi
ners’’ method of statistical enhancement described in R
@11#. The basic idea of this approach in the context o
percolation cluster growth algorithm is as follows:

~i! Before we start growing a cluster, assign a value of o
to the weightW of the cluster.

~ii ! We use the Leath method to grow clusters@12#. While
the cluster is growing, we calculate certain properties of
state of the cluster after every interval ofn chemical shells of
growth.

~iii ! If certain criteria on the properties of the state of t
cluster that are described below are met, we ‘‘clone’’ t
state so we havem copies ~including the original! of the
state, adjustW accordingly toW/m and continue growing
each of thesem clones. If these criteria are not met, simp
continue growing the noncloned cluster.

Cloning can take place multiple times during the grow
of a cluster; the result is a tree structure of realizations wh
the leaves of the tree represent the completion of clu
growth. At each of these completions of cluster growth,
calculate the quantities being studied, in this case 3-bl
masses, and with weightW update a histogram over all clus
ters. By adding them with weightW, statistical averages ar
not biased even though the ensemble is biased.

Here, m and n are parameters which can be tuned
achieve the desired level of ‘‘rareness’’ which can
reached. Ifn is large andm is small, there will be little
cloning and we will generate clusters with weights on
moderately smaller than without enhancement. Ifn is small
andm is large, there will be much cloning and we will gen
erate clusters with weights very much smaller than with
enhancement. However, ifn is sufficiently small and/orm is
sufficiently large, cluster growth will effectively never en
naturally, and we will not be able to extract useful inform
tion from the simulation.

From an implementation standpoint, it is not necessar
actually create copies of the state of the system in comp
memory to create the clones; as noted in Ref.@11# we can
effectively walk the clone tree in a ‘‘depth-first’’ manne
completely treating a given clone before we begin treat
the next clone. What is required is that we save the stat
the system before we begin growth based on a clone so
we can return to that state when we begin growth on the n
clone. This saving of state is accomplished naturally wit
02610
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‘‘last-in-first-out’’ stack in which we maintain information
about sites in the cluster.

We first attempted to create realizations with lar
3-blocks by creating very dense clusters. We set as our
teria for cloning the condition that the number of occupi
bonds actually created during then shell interval be larger
than the number of times we determined whether a b
should be occupied times the bond occupation probabi
While this algorithm is very effective in creating dense clu
ters, it did not result in large 3-blocks within the clusters. W
were, however, successful in creating clusters with la
3-blocks by using a criterion which results in the creation
large blobs: clone if the most massive blob found in t
cluster at the end of the interval is more massive than
largest blob created before growth in the interval is beg
That is, either an existing blob grows, one or more blo
merge or a new blob is created which is more massive t
any existing previous to growth in the interval.

B. Incremental cluster decomposition

The decision whether to clone depends on a knowledg
the mass of the largest blob in the cluster. It would be un
ceptably inefficient to decompose the entire cluster i
blobs starting from scratch each time we must make a c
ing decision. Instead, we use an algorithm for cluster deco
position which allows us to incrementally decompose
cluster into blobs. At the end of an interval ofn chemical
shells of growth, we need only to consider the effect on
cluster decomposition of the sites and bonds we have ad
to the cluster during the interval. The algorithm, based on
algorithm of Ref.@13# for determining the cluster backbone
works as follows:

FIG. 2. P(N3uL), the distribution of 3-block massN3 for ~from
left to right! L58, 16, 32, 64, and 128 for the case of four dime
sions.~a! uncollapsed,~b! collapsed using a value ofd350.7.
3-2
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~i! During the growth of the cluster we identify ‘‘loop
sites.’’ Loop sites are sites which are reached from two
more different growth sites simultaneously@7,13#.

~ii ! At the end of an interval of growth, we use the bur
ing algorithm@7,13# to walk back from each loop site towar
the origin of the cluster. When we reach a state during
walk when only one site is burning, all sites traversed so
compose a blob. If during the walk we hit an existing blo
that blob is incorporated into the blob associated with
loop site from which the walk started.

~iii ! When we have exhausted all clones created at the
of an interval, we must restore the system to its state at
beginning of the interval. That is, we must~a! destroy all
blobs created,~b! separate any blobs which were merge
and~c! reduce any blobs which grew during the interval ba
to their size at the beginning of the interval.

This is all accomplished by carefully maintaining the a
propriate state information during the growth and cluster
composition processes.

IV. RESULTS AND DISCUSSION

Using the methods described in the preceding section
generate percolation clusters on hypercubic lattices for
3D, 4D, 5D, and 6D at their respective percolation thresho
@14,15#. To validate our use of the go with the winners a
proach and our incremental cluster decomposition techniq
we compared our results in 2D and 3D with previous res
@9,10# and found them to be consistent.

In Fig. 2~a!, we plotP(N3uL), the distribution of 3-block
massN3 in a system of sizeL for variousL for d54. In Fig.
2~b!, we plot the same distributions collapsed using the e

FIG. 3. P(N3uL), the distribution of 3-block massN3 for ~from
left to right! L58, 16, 32, and 64 for the case of five dimension
~a! uncollapsed,~b! collapsed using a value ofd350.5.
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mated valued350.7 which, visually, yields the best collaps
We show analogous plots ford55 andd56 in Figs. 3 and
4. Based on the value ofd3 which yields the best collapse
we estimate

d35H 0.760.2 ~4D!

0.560.2 ~5D!.
~1!

If we fit our results for 6D with a power law, then we find th
best collapse is obtained ford350.2560.2. However, it it
difficult to numerically distinguish between power-law sca
ing with a small exponent and logarithmic scaling. Hence
Fig. 4~c!, we also collapse the distributions for 6D assumi
d350 with logarithmic corrections to scaling

N3;11Aln L ~6D!, ~2!

with A51.0. The quality of the collapses for power-law sca
ing and logarithmic scaling seem to be comparable; howe

.

FIG. 4. P(N3uL), the distribution of 3-block massN3 for ~from
left to right! L58, 16, and 32 for the case of six dimensions.~a!
uncollapsed,~b! collapsed using a value ofd350.25, ~c! collapsed
assumingN3;11Aln L with A51.0.
3-3
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the facts thatd350 for the Cayley tree and that logarithm
corrections to scaling are common at the upper critical
mension favor the conclusion thatd350 for d56.

Our results, despite their limited precision, indicate th
d3 is not independent of dimension below the upper criti
dimension. The possibility of such independence in 2D a
3D is only a manifestation of the relatively low precision
the results and the relative closeness of the actual value
d3 for d52 and 3.

Finally, we make two observations:
~i! We note that the behavior ofd3 with dimension is

qualitatively the opposite of the behavior ofd2, the blob
fractal dimension, in the following sense:d2 increases sig-
nificantly betweend52 andd53 but increases very slowly
s

o
ys

ys
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betweend53 andd56 @2,16–19#, while d3 is slowly de-
creasing betweend52 andd53 but then decreases signifi
cantly betweend53 andd56.

~ii ! Since k50 corresponds to the entire system, whi
scales asLd, we note that fork50, 1, 2, and 3, the fracta
dimensionsdk for 6D are 6, 4, 2, and 0, respectively, that
a series of decreasing consecutive even integers.
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